Valency of Distance-regular Antipodal Graphs with Diameter 4

نویسنده

  • Stefko Miklavic
چکیده

Let G be a non-bipartite strongly regular graph on n vertices of valency k. We prove that if G has a distance-regular antipodal cover of diameter 4, then k ≤ 2(n + 1)/5 , unless G is the complement of triangular graph T (7), the folded Johnson graph J (8, 4) or the folded halved 8-cube. However, for these three graphs the bound k ≤ (n − 1)/2 holds. This result implies that only one of a complementary pair of strongly regular graphs can be the antipodal quotient of an antipodal distanceregular graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On triangle-free distance-regular graphs with an eigenvalue multiplicity equal to the valency

Let Γ be a triangle-free distance-regular graph with diameter d ≥ 3, valency k ≥ 3 and intersection number a2 6= 0. Assume Γ has an eigenvalue with multiplicity k. We show that Γ is 1-homogeneous in the sense of Nomura when d = 3 or when d ≥ 4 and a4 = 0. In the latter case we prove that Γ is an antipodal cover of a strongly regular graph, which means that it has diameter 4 or 5. For d = 5 the ...

متن کامل

Triangle-free distance-regular graphs with an eigenvalue multiplicity equal to their valency and diameter 3

In this paper, triangle-free distance-regular graphs with diameter 3 and an eigenvalue θ with multiplicity equal to their valency are studied. Let Γ be such a graph. We first show that θ = −1 if and only if Γ is antipodal. Then we assume that the graph Γ is primitive. We show that it is formally self-dual (and hence Q-polynomial and 1-homogeneous), all its eigenvalues are integral, and the eige...

متن کامل

Homotopy in Q - polynomial distance - regular graphs ( Heather

Let denote a Q-polynomial distance-regular graph with diameter d¿ 3. We show that if the valency is at least three, then the intersection number p 12 is at least two; consequently the girth is at most six. We then consider a condition on the dual eigenvalues of that must hold if is the quotient of an antipodal distance-regular graph of diameter D¿ 7; we call a pseudoquotient whenever this condi...

متن کامل

Antipodal Distance Transitive Covers of Complete Graphs

This paper is a contribution towards the determination of all finite distance-transitive graphs. We obtain a classification of all the antipodal distance-transitive graphs having as antipodal quotient a complete graph Kn . Such a graph necessarily has diameter 2 or 3 (see for example [2, Proposition 4.2.2 (ii)]). Those of diameter 2 are simply the complete multipartite graphs Kr,...,r with n pa...

متن کامل

Distance-regular graphs with complete multipartite μ-graphs and AT4 family

Let be an antipodal distance-regular graph of diameter 4, with eigenvalues θ0 > θ1 > θ2 > θ3 > θ4. Then its Krein parameter q4 11 vanishes precisely when is tight in the sense of Jurišić, Koolen and Terwilliger, and furthermore, precisely when is locally strongly regular with nontrivial eigenvalues p := θ2 and −q := θ3. When this is the case, the intersection parameters of can be parametrized b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2002